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Galbrun’s equation

Galbrun’s equation for time-harmonic acoustic waves for the unknown u
is given by the partial differential equation

ρ(−iω + ∂b)
2u− grad(ρc2s divu)− iωγρu

+Hess(p)u+(divu) grad p− grad(grad p · u) = f

in the presence of density ρ, pressure p, sound speed cs, background
velocity b, damping coefficient γ, and source f .

∂b := b · ∇

b, cs, ρ, : O → R be continuous with

cs ≤ cs ≤ cs, ρ ≤ ρ ≤ ρ,∥∥c−1
s b

∥∥2
∞ ≤ c < 1, div(ρb) = 0 in O.

and boundary condition
u · n = 0 on ∂O
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Constant pressure

Find u ∈ X such that

a(u,u′) = ⟨f ,u′⟩ ∀u′ ∈ X

with the sesquilinear form a(u,u′)

⟨c2sρ divu,divu′⟩ − ⟨ρ(ω + i∂b)u, (ω + i∂b)u
′⟩ − iω⟨γρu,u′⟩.

where

X = {u ∈ L2(O,C3) : divu ∈ L2(O), ∂bu ∈ L2(O,C3), n · u = 0 on ∂O}

and inner product

⟨u,u′⟩X := ⟨divu,divu′⟩+ ⟨∂bu, ∂bu′⟩+ ⟨u,u′⟩

Pitfall! X ̸↪→ L2, problem is not weakly coercive!

H(div)
XH1

0
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Weak T-coercive

Definition

The problem
Au = f

is weak T -coercive if there exists T ∈ L(X) bounded bijective,
K ∈ L(X) compact, B ∈ L(X) coercive

AT = B +K.

▶ If A is weakly T -coercive, then A is Fredholm operator with index
zero.

▶ If A is a Fredholm operator, then A is injective ⇔ A surjective



Space decomposition

Sesquilinear form a(u,u′) given by

⟨c2sρdivu,divu′⟩ − ⟨ρ(ω + i∂b)u, (ω + i∂b)u
′⟩ − iω⟨γρu,u′⟩.

with a splitting
X = V ⊕W

and for u = v +w
Tu = v −w

Idea: Let A ∈ L(X) be the operator associated to a(·, ·)

A↔
(
Avv Avw

Awv Aww

)
Avv, Avw, Awv with compact part
Aww with good sign

Wishlist space V

▶ V ↪→ L2

▶ ∥divv∥L2 ≥ ∥v∥X



Space decomposition

X = V ⊕W

with

V := {u ∈ H1
0 : ⟨∇u,∇u′⟩ = 0 for all u′ ∈ H1

0 with divu′ = 0},
W := {u ∈ X : divu = 0}

Assumption: There exists a constant β > 0 such that

inf
f∈L2

0\{0}
sup

u∈X\{0}

|⟨divu, f⟩|
∥∇u∥L2∥f∥L2

> β

▶ V ↪→ L2

▶ ∥divv∥L2 ≥ ∥v∥X
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Conforming discretization

We consider finite element spaces

Xn := {u ∈ H1 : ν · u = 0,u|τ ∈ (Pk(τ))
3 ∀τ ∈ Tn},

The approximated problem then reads:

find un ∈ Xn s.t. a(un,u
′
n) = ⟨f ,u′

n⟩ ∀u′
n ∈ Xn.

with the sesquilinear form a(un,u
′
n) given by

⟨c2sρdivun,divu
′
n⟩ − ⟨ρ(ω + i∂b)un, (ω + i∂b)u

′
n⟩ − iω⟨γρun,u

′
n⟩

Let A ∈ L(X) be the operator associated to a(·, ·) and An := PXnA|Xn .



New T-compatibility condition

Theorem:

▶ There exists pn ∈ L(X,Xn) s.t. ∥pnu∥Xn
→ ∥u∥X ∀u ∈ X

▶ The discrete system can be written as

AnTn = Bn +Kn.

▶ Bn, Tn ∈ L(Xn) bijective, Kn ∈ L(Xn) with (Kn)n∈N is compact

▶ An, Bn, Tn asymptotic consistent, i.e.

lim
n→∞

∥Tnpnu− pnTu∥Xn = 0 for each u ∈ X,

Then
An is invertible and un → u



Discrete decomposition

Xn = Vn ⊕Wn, Tnun = vn −wn

with

Wn := {un ∈ Xn : divun = 0}
Vn := {un ∈ Xn ∩H1

0 : ⟨∇un,∇u′
n⟩ = 0 ∀u′

n ∈ H1
0 ∩Wn},

Lemma

Assume discrete inf-sup stability (k > d). For each u ∈ X it holds
limn→∞ ∥TnPXnu− PXnTu∥X = 0

The following problem is well-posed:

Find vn ∈ Vn such that divvn = divun,

Let D−1
n ∈ L(Qn, Vn) be the respective solution operator. Setting

wn := un − vn it is sufficient to show

lim
n→∞

∥∥v −D−1
n PQn

divv
∥∥
H1 = 0



Towards heterogeneous pressure



Towards heterogeneous pressure

Consider a(u,u′) with q = (c2sρ)
−1∇p

⟨c2sρ(div+q·)u, (div+q·)u′⟩−⟨ρ(ω + i∂b)u, (ω + i∂b)u
′⟩

− iω⟨ργu,u′⟩+⟨(Hess(p)− c2sρq⊗ q)u,u′⟩.

Consider now the divergence operator D ∈ L(V,L2
0), Dv := divv. We

know that D−1 ∈ L(L2
0, V ). Now consider

D̃ ∈ L(V,L2
0), D̃v := Dv+q · v +Mv + Fv

with Mv := −mean(q · v) and a finite dimensional operator

Fv :=
∑N

n=1 ϕn⟨divv,divψn⟩, ϕn ∈ L2
0, ψn ∈ V such that D̃ is

bijective.



Towards heterogeneous pressure

For u ∈ X we construct a topological decomposition as follows.

v := D̃−1D̃u and w := u− v.

Further it follows that

(div+q·)w = (div+q·)u− (div+q·)v
= (div+q·)u− (div+q·+M + F )v + (M + F )v

= −(M + F )w

is compact.



Numerical examples



Numerical example

ρ = 1.5 + 0.2 cos(πx/4) sin(πy/2), c2 = 1.44 + 0.16ρ, ω = 0.78× 2π,

b =
coeff

ρ

(
0.3 + 0.1 cos(πy/4)
0.2 + 0.08 sin(πx/4)

)
, γ = 0.1, p = 1.44ρ+ 0.08ρ2
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Figure: The real part of the first entry of the reference solution computed with
p = 5 and h = 2−4 for two different values of the coefficient of the flow field b,
coeff = 0.2 on the left and coeff = 1.5 on the right.

J. Chabassier and M. Duruflé, Solving time-harmonic Galbrun’s equation with an arbitrary flow. Application to
Helioseismology, Research Report RR-9192, INRIA Bordeaux, July 2018



Assumption: There exists a constant β > 0 such that

inf
fn∈Qn\{0}

sup
un∈Xn\{0}

|⟨divun, f⟩|
∥∇un∥L2∥fn∥L2

> βn

▶ k ≥ 4 and no singular points in the mesh

▶ k ≥ 2 and barycentric mesh refinement

Figure: Examples of singular mesh points, dashed lines denote boundary of the
domain.

Assumption 2: Sub-sonic flow: ∥c−1
0 b∥L∞ < βh

c0
2ρ

c02ρ
.

L. R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise
polynomials, RAIRO, Modélisation Math. Anal. Numér., 19 (1985), pp. 111–143

J. Guzmán and M. Neilan, Inf-sup stable finite elements on barycentric refinements producing divergence-free approximations in
arbitrary dimensions, SIAM J. Numer. Anal., 56 (2018), pp. 2826–2844



Meshes
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Figure: Meshes
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k = 2
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Figure: Solutions for k = 2.
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k = 4
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Figure: Solutions for k = 4.
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Large Mach number

We consider the domain O = (−4, 4)2 and the background flow given by

b =
α

ρ

(
sin(πx) cos(πy)
− cos(πx) sin(πy)

)
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Figure: Error for different values of the coefficient in the background flow b
and fixed polynomial order k = 4.

α = 0.1 0.2 0.3 0.4∥∥c−1
s b

∥∥
L∞ ≈ 0.22 0.31 0.38 0.44



Conclusion

Summary

▶ Weak T -coercivity

▶ Novel T -compatibility condition

▶ Application to Galbrun’s equation
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