Numerical treatment of the vectorial equations of solar oscillations

Martin Halla, Christoph Lehrenfeld, Paul Stocker
Georg-August-Universität, Göttingen, Germany

Galbrun's equation

Galbrun's equation for time-harmonic acoustic waves for the unknown u is given by the partial differential equation

$$
\begin{aligned}
\rho(-i \omega & \left.+\partial_{\mathbf{b}}\right)^{2} \mathbf{u}-\operatorname{grad}\left(\rho c_{s}^{2} \operatorname{div} \mathbf{u}\right)-i \omega \gamma \rho \mathbf{u} \\
& +\operatorname{Hess}(p) \mathbf{u}+(\operatorname{div} \mathbf{u}) \operatorname{grad} p-\operatorname{grad}(\operatorname{grad} p \cdot \mathbf{u})=\mathbf{f}
\end{aligned}
$$

in the presence of density ρ, pressure p, sound speed c_{s}, background velocity \mathbf{b}, damping coefficient γ, and source \mathbf{f}.

$$
\partial_{\mathrm{b}}:=\mathrm{b} \cdot \nabla
$$

$\mathbf{b}, c_{s}, \rho,: \mathcal{O} \rightarrow \mathbb{R}$ be continuous with

$$
\begin{array}{ll}
\underline{c_{s}} \leq c_{s} \leq \overline{c_{s}}, & \underline{\rho} \leq \rho \leq \bar{\rho} \\
\left\|c_{s}^{-1} \mathbf{b}\right\|_{\infty}^{2} \leq c<1, & \operatorname{div}(\rho \mathbf{b})=0 \text { in } \mathcal{O}
\end{array}
$$

and boundary condition

$$
\mathbf{u} \cdot \mathbf{n}=0 \text { on } \partial \mathcal{O}
$$

Short excerpt of the Literature

1931, H. Galbrun, Propagation d'une onde sonore dans l'atmosphre et théorie des zones de silence :

2020, M. Maeder , G. Gabard and S. Marburg 90 Years of Galbrun's Equation: An Unusual Formulation for Aeroacoustics and Hydroacoustics in Terms of the Lagrangian Displacement

2003, A.-S. Bonnet-Ben Dhia et at., Regularization of the time-harmonic Galbrun's equations
2018, J. Chabassier, M. Duruflé, Solving time-harmonic Galbrun's equation with an arbitrary flow. Application to Helioseismology 2019, L. Hägg and M. Berggren On the well-posedness of Galbrun's equation
2021, H. Barucq et al., Outgoing modal solutions for Galbrun's equation in helioseismology
2021, M. Halla and T. Hohage, On the well-posedness of the damped time-harmonic Galbrun equation and the equations of stellar oscillations,

Recap: Well-posedness for Galbrun's equation, without pressure

M. Halla and T. Hohage, On the well-posedness of the damped time-harmonic Galbrun equation and the equations of stellar oscillations, SIAM J. Math. Anal., 53 (2021), pp. 4068-4095
A. Buffa, M. Costabel, and C. Schwab, Boundary element methods for Maxwell's equations on non-smooth domains, Numer. Math., 92 (2002), pp. 679-710
A. Buffa, Remarks on the discretization of some noncoercive operator with applications to heterogeneous maxwell equations, SIAM Journal on Numerical Analysis, 43 (2005), pp. 1-18

Constant pressure

Find $\mathbf{u} \in \mathbb{X}$ such that

$$
a\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=\left\langle\mathbf{f}, \mathbf{u}^{\prime}\right\rangle \quad \forall \mathbf{u}^{\prime} \in \mathbb{X}
$$

with the sesquilinear form $a\left(\mathbf{u}, \mathbf{u}^{\prime}\right)$

$$
\left\langle c_{s}^{2} \rho \operatorname{div} \mathbf{u}, \operatorname{div} \mathbf{u}^{\prime}\right\rangle-\left\langle\rho\left(\omega+i \partial_{\mathbf{b}}\right) \mathbf{u},\left(\omega+i \partial_{\mathbf{b}}\right) \mathbf{u}^{\prime}\right\rangle-i \omega\left\langle\gamma \rho \mathbf{u}, \mathbf{u}^{\prime}\right\rangle .
$$

where

$$
\mathbb{X}=\left\{\mathbf{u} \in L^{2}\left(\mathcal{O}, \mathbb{C}^{3}\right): \operatorname{div} \mathbf{u} \in L^{2}(\mathcal{O}), \partial_{\mathbf{b}} \mathbf{u} \in L^{2}\left(\mathcal{O}, \mathbb{C}^{3}\right), \mathbf{n} \cdot \mathbf{u}=0 \text { on } \partial \mathcal{O}\right\}
$$

and inner product

$$
\left\langle\mathbf{u}, \mathbf{u}^{\prime}\right\rangle_{\mathbb{X}}:=\left\langle\operatorname{div} \mathbf{u}, \operatorname{div} \mathbf{u}^{\prime}\right\rangle+\left\langle\partial_{\mathbf{b}} \mathbf{u}, \partial_{\mathbf{b}} \mathbf{u}^{\prime}\right\rangle+\left\langle\mathbf{u}, \mathbf{u}^{\prime}\right\rangle
$$

Constant pressure

Find $\mathbf{u} \in \mathbb{X}$ such that

$$
a\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=\left\langle\mathbf{f}, \mathbf{u}^{\prime}\right\rangle \quad \forall \mathbf{u}^{\prime} \in \mathbb{X}
$$

with the sesquilinear form $a\left(\mathbf{u}, \mathbf{u}^{\prime}\right)$

$$
\left\langle c_{s}^{2} \rho \operatorname{div} \mathbf{u}, \operatorname{div} \mathbf{u}^{\prime}\right\rangle-\left\langle\rho\left(\omega+i \partial_{\mathbf{b}}\right) \mathbf{u},\left(\omega+i \partial_{\mathbf{b}}\right) \mathbf{u}^{\prime}\right\rangle-i \omega\left\langle\gamma \rho \mathbf{u}, \mathbf{u}^{\prime}\right\rangle .
$$

where

$$
\mathbb{X}=\left\{\mathbf{u} \in L^{2}\left(\mathcal{O}, \mathbb{C}^{3}\right): \operatorname{div} \mathbf{u} \in L^{2}(\mathcal{O}), \partial_{\mathbf{b}} \mathbf{u} \in L^{2}\left(\mathcal{O}, \mathbb{C}^{3}\right), \mathbf{n} \cdot \mathbf{u}=0 \text { on } \partial \mathcal{O}\right\}
$$

and inner product

$$
\left\langle\mathbf{u}, \mathbf{u}^{\prime}\right\rangle_{\mathbb{X}}:=\left\langle\operatorname{div} \mathbf{u}, \operatorname{div} \mathbf{u}^{\prime}\right\rangle+\left\langle\partial_{\mathbf{b}} \mathbf{u}, \partial_{\mathbf{b}} \mathbf{u}^{\prime}\right\rangle+\left\langle\mathbf{u}, \mathbf{u}^{\prime}\right\rangle
$$

Pitfall! $\mathbb{X} \nrightarrow L^{2}$, problem is not weakly coercive!

Weak T-coercive

Definition

The problem

$$
A u=f
$$

is weak T-coercive if there exists $T \in L(X)$ bounded bijective, $K \in L(X)$ compact, $B \in L(X)$ coercive

$$
A T=B+K
$$

- If A is weakly T-coercive, then A is Fredholm operator with index zero.
- If A is a Fredholm operator, then A is injective $\Leftrightarrow A$ surjective

Space decomposition

Sesquilinear form $a\left(\mathbf{u}, \mathbf{u}^{\prime}\right)$ given by

$$
\left\langle c_{s}^{2} \rho \operatorname{div} \mathbf{u}, \operatorname{div} \mathbf{u}^{\prime}\right\rangle-\left\langle\rho\left(\omega+i \partial_{\mathbf{b}}\right) \mathbf{u},\left(\omega+i \partial_{\mathbf{b}}\right) \mathbf{u}^{\prime}\right\rangle-i \omega\left\langle\gamma \rho \mathbf{u}, \mathbf{u}^{\prime}\right\rangle .
$$

with a splitting

$$
\mathbb{X}=V \oplus W
$$

and for $\mathbf{u}=\mathbf{v}+\mathbf{w}$

$$
T \mathbf{u}=\mathbf{v}-\mathbf{w}
$$

Idea: Let $A \in L(\mathbb{X})$ be the operator associated to $a(\cdot, \cdot)$

$$
A \leftrightarrow\left(\begin{array}{ll}
A_{\mathrm{vv}} & A_{\mathrm{vw}} \\
A_{\mathrm{wv}} & A_{\mathrm{ww}}
\end{array}\right) \quad \begin{aligned}
& A_{\mathrm{vv}}, A_{\mathrm{vw}}, A_{\mathrm{wv}} \text { with compact part } \\
& A_{\mathrm{ww}} \text { with good sign }
\end{aligned}
$$

Wishlist space V
 - $V \hookrightarrow L^{2}$
 - $\|\operatorname{div} \mathbf{v}\|_{L^{2}} \geq\|\mathbf{v}\|_{\mathbb{X}}$

Space decomposition

$$
\mathbb{X}=V \oplus W
$$

with

$$
\begin{aligned}
V & :=\left\{\mathbf{u} \in \mathbf{H}_{0}^{1}:\left\langle\nabla \mathbf{u}, \nabla \mathbf{u}^{\prime}\right\rangle=0 \text { for all } \mathbf{u}^{\prime} \in \mathbf{H}_{0}^{1} \text { with } \operatorname{div} \mathbf{u}^{\prime}=0\right\}, \\
W & :=\{\mathbf{u} \in \mathbb{X}: \operatorname{div} \mathbf{u}=0\}
\end{aligned}
$$

Assumption: There exists a constant $\beta>0$ such that

$$
\inf _{f \in L_{0}^{2} \backslash\{0\}} \sup _{\mathbf{u} \in \mathbb{X} \backslash\{0\}} \frac{|\langle\operatorname{div} \mathbf{u}, f\rangle|}{\|\nabla \mathbf{u}\|_{L^{2}}\|f\|_{L^{2}}}>\beta
$$

- $V \hookrightarrow L^{2}$
- $\|\operatorname{div} \mathbf{v}\|_{L^{2}} \geq\|\mathbf{v}\|_{\mathbb{X}}$

Discretization and T-compatability

T. Hohage and L. Nannen, Convergence of infinite element methods for scalar waveguide problems, BIT, 55 (2015), pp. 215-254
A.-S. Bonnet-BenDhia, C. Carvalho, and P. Ciarlet, Mesh requirements for the finite element approximation of problems with sign-changing coefficients, Numerische Mathematik, 138 (2018), pp. 801-838
M. Halla, Galerkin approximation of holomorphic eigenvalue problems: weak T-coercivity and T-compatibility, Numer. Math., 148 (2021), pp. 387-407

Conforming discretization

We consider finite element spaces

$$
\mathbb{X}_{n}:=\left\{\mathbf{u} \in \mathbf{H}^{1}: \boldsymbol{\nu} \cdot \mathbf{u}=0,\left.\mathbf{u}\right|_{\tau} \in\left(P_{k}(\tau)\right)^{3} \quad \forall \tau \in \mathcal{T}_{n}\right\}
$$

The approximated problem then reads:

$$
\text { find } \mathbf{u}_{n} \in \mathbb{X}_{n} \text { s.t. } \quad a\left(\mathbf{u}_{n}, \mathbf{u}_{n}^{\prime}\right)=\left\langle\mathbf{f}, \mathbf{u}_{n}^{\prime}\right\rangle \quad \forall \mathbf{u}_{n}^{\prime} \in \mathbb{X}_{n}
$$

with the sesquilinear form $a\left(\mathbf{u}_{n}, \mathbf{u}_{n}^{\prime}\right)$ given by

$$
\left\langle c_{s}^{2} \rho \operatorname{div} \mathbf{u}_{n}, \operatorname{div} \mathbf{u}_{n}^{\prime}\right\rangle-\left\langle\rho\left(\omega+i \partial_{\mathbf{b}}\right) \mathbf{u}_{n},\left(\omega+i \partial_{\mathrm{b}}\right) \mathbf{u}_{n}^{\prime}\right\rangle-i \omega\left\langle\gamma \rho \mathbf{u}_{n}, \mathbf{u}_{n}^{\prime}\right\rangle
$$

Let $A \in L(\mathbb{X})$ be the operator associated to $a(\cdot, \cdot)$ and $A_{n}:=\left.P_{\mathbb{X}_{n}} A\right|_{\mathbb{X}_{n}}$.

New T-compatibility condition

Theorem:

- There exists $p_{n} \in L\left(X, X_{n}\right)$ s.t. $\left\|p_{n} u\right\|_{X_{n}} \rightarrow\|u\|_{X} \forall u \in X$
- The discrete system can be written as

$$
A_{n} T_{n}=B_{n}+K_{n} .
$$

- $B_{n}, T_{n} \in L\left(X_{n}\right)$ bijective, $K_{n} \in L\left(X_{n}\right)$ with $\left(K_{n}\right)_{n \in \mathbb{N}}$ is compact
- A_{n}, B_{n}, T_{n} asymptotic consistent, i.e.

$$
\lim _{n \rightarrow \infty}\left\|T_{n} p_{n} u-p_{n} T u\right\|_{X_{n}}=0 \text { for each } u \in X,
$$

Then

$$
A_{n} \text { is invertible and } u_{n} \rightarrow u
$$

Discrete decomposition

$$
\mathbb{X}_{n}=V_{n} \oplus W_{n}, \quad T_{n} \mathbf{u}_{n}=\mathbf{v}_{n}-\mathbf{w}_{n}
$$

with

$$
\begin{aligned}
W_{n} & :=\left\{\mathbf{u}_{n} \in \mathbb{X}_{n}: \operatorname{div} \mathbf{u}_{n}=0\right\} \\
V_{n} & :=\left\{\mathbf{u}_{n} \in \mathbb{X}_{n} \cap \mathbf{H}_{0}^{1}:\left\langle\nabla \mathbf{u}_{n}, \nabla \mathbf{u}_{n}^{\prime}\right\rangle=0 \quad \forall \mathbf{u}_{n}^{\prime} \in \mathbf{H}_{0}^{1} \cap W_{n}\right\}
\end{aligned}
$$

Lemma

Assume discrete inf-sup stability $(k>d)$. For each $\mathbf{u} \in \mathbb{X}$ it holds $\lim _{n \rightarrow \infty}\left\|T_{n} P_{\mathbb{X}_{n}} \mathbf{u}-P_{\mathbb{X}_{n}} T \mathbf{u}\right\|_{\mathbb{X}}=0$

The following problem is well-posed:
Find $\mathbf{v}_{n} \in V_{n}$ such that $\operatorname{div} \mathbf{v}_{n}=\operatorname{div} \mathbf{u}_{n}$,
Let $D_{n}^{-1} \in L\left(Q_{n}, V_{n}\right)$ be the respective solution operator. Setting $\mathbf{w}_{n}:=\mathbf{u}_{n}-\mathbf{v}_{n}$ it is sufficient to show

$$
\lim _{n \rightarrow \infty}\left\|\mathbf{v}-D_{n}^{-1} P_{Q_{n}} \operatorname{div} \mathbf{v}\right\|_{\mathbf{H}^{1}}=0
$$

Towards heterogeneous pressure

Towards heterogeneous pressure

Consider $a\left(\mathbf{u}, \mathbf{u}^{\prime}\right)$ with $\mathbf{q}=\left(c_{s}^{2} \rho\right)^{-1} \nabla p$

$$
\begin{aligned}
& \left\langle c_{s}^{2} \rho(\operatorname{div}+\mathbf{q} \cdot) \mathbf{u},(\operatorname{div}+\mathbf{q} \cdot) \mathbf{u}^{\prime}\right\rangle-\left\langle\rho\left(\omega+i \partial_{\mathbf{b}}\right) \mathbf{u},\left(\omega+i \partial_{\mathbf{b}}\right) \mathbf{u}^{\prime}\right\rangle \\
& \quad-i \omega\left\langle\rho \gamma \mathbf{u}, \mathbf{u}^{\prime}\right\rangle+\left\langle\left(\operatorname{Hess}(p)-c_{s}^{2} \rho \mathbf{q} \otimes \mathbf{q}\right) \mathbf{u}, \mathbf{u}^{\prime}\right\rangle
\end{aligned}
$$

Consider now the divergence operator $D \in L\left(V, L_{0}^{2}\right), D \mathbf{v}:=\operatorname{div} \mathbf{v}$. We know that $D^{-1} \in L\left(L_{0}^{2}, V\right)$. Now consider

$$
\tilde{D} \in L\left(V, L_{0}^{2}\right), \tilde{D} \mathbf{v}:=D \mathbf{v}+\mathbf{q} \cdot \mathbf{v}+M \mathbf{v}+F \mathbf{v}
$$

with $M \mathbf{v}:=-\operatorname{mean}(\mathbf{q} \cdot \mathbf{v})$ and a finite dimensional operator $F \mathbf{v}:=\sum_{n=1}^{N} \phi_{n}\left\langle\operatorname{div} \mathbf{v}, \operatorname{div} \psi_{n}\right\rangle, \phi_{n} \in L_{0}^{2}, \psi_{n} \in V$ such that \tilde{D} is bijective.

Towards heterogeneous pressure

For $\mathbf{u} \in \mathbb{X}$ we construct a topological decomposition as follows.

$$
\mathbf{v}:=\tilde{D}^{-1} \tilde{D} \mathbf{u} \quad \text { and } \quad \mathbf{w}:=\mathbf{u}-\mathbf{v} .
$$

Further it follows that

$$
\begin{aligned}
(\operatorname{div}+\mathbf{q} \cdot) \mathbf{w} & =(\operatorname{div}+\mathbf{q} \cdot) \mathbf{u}-(\operatorname{div}+\mathbf{q} \cdot) \mathbf{v} \\
& =(\operatorname{div}+\mathbf{q} \cdot) \mathbf{u}-(\operatorname{div}+\mathbf{q} \cdot+M+F) \mathbf{v}+(M+F) \mathbf{v} \\
& =-(M+F) \mathbf{w}
\end{aligned}
$$

is compact.

Numerical examples

Numerical example

$$
\begin{array}{lll}
\rho=1.5+0.2 \cos (\pi x / 4) \sin (\pi y / 2), & c^{2}=1.44+0.16 \rho, & \omega=0.78 \times 2 \pi \\
\mathbf{b}=\frac{\text { coeff }}{\rho}\binom{0.3+0.1 \cos (\pi y / 4)}{0.2+0.08 \sin (\pi x / 4)}, & \gamma=0.1, & p=1.44 \rho+0.08 \rho^{2}
\end{array}
$$

Figure: The real part of the first entry of the reference solution computed with $p=5$ and $h=2^{-4}$ for two different values of the coefficient of the flow field \mathbf{b}, coeff $=0.2$ on the left and coeff $=1.5$ on the right.

Assumption: There exists a constant $\beta>0$ such that

$$
\inf _{f_{n} \in Q_{n} \backslash\{0\}} \sup _{\mathbf{u}_{n} \in \mathbb{X}_{n} \backslash\{0\}} \frac{\left|\left\langle\operatorname{div} \mathbf{u}_{n}, f\right\rangle\right|}{\left\|\nabla \mathbf{u}_{n}\right\|_{L^{2}}\left\|f_{n}\right\|_{L^{2}}}>\beta_{n}
$$

- $k \geq 4$ and no singular points in the mesh
- $k \geq 2$ and barycentric mesh refinement

Figure: Examples of singular mesh points, dashed lines denote boundary of the domain.

Assumption 2: Sub-sonic flow: $\left\|c_{0}^{-1} \mathbf{b}\right\|_{L^{\infty}}<\beta_{h}{\overline{c_{0}}}^{2} \frac{\rho}{\overline{c_{0}}}$.
L. R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, RAIRO, Modélisation Math. Anal. Numér., 19 (1985), pp. 111-143
J. Guzmán and M. Neilan, Inf-sup stable finite elements on barycentric refinements producing divergence-free approximations in arbitrary dimensions, SIAM J. Numer. Anal., 56 (2018), pp. 2826-2844

Meshes

Figure: Meshes

$$
k=2
$$

Figure: Solutions for $k=2$.

$$
k=4
$$

Figure: Solutions for $k=4$.

Large Mach number

We consider the domain $\mathcal{O}=(-4,4)^{2}$ and the background flow given by

$$
\mathbf{b}=\frac{\alpha}{\rho}\binom{\sin (\pi x) \cos (\pi y)}{-\cos (\pi x) \sin (\pi y)}
$$

Figure: Error for different values of the coefficient in the background flow \mathbf{b} and fixed polynomial order $k=4$.

$$
\begin{array}{rllll}
\alpha & =0.1 & 0.2 & 0.3 & 0.4 \\
\hline\left\|c_{s}^{-1} \mathbf{b}\right\|_{\mathbf{L}^{\infty}} \approx & 0.22 & 0.31 & 0.38 & 0.44
\end{array}
$$

Conclusion

Summary

- Weak T-coercivity
- Novel T-compatibility condition
- Application to Galbrun's equation

More in

M. Halla, C. Lehrenfeld, and P. Stocker, A new T-compatibility condition and its application to the discretization of the damped time-harmonic Galbrun's equation, arXiv preprint arxiv:2209.01878, (2022)
T. Alemán, M. Halla, C. Lehrenfeld, and P. Stocker, Robust finite element discretizations for a simplified Galbrun's equation, arXiv preprint arxiv:2205.15650, (2022)
M. Halla and T. Hohage, On the well-posedness of the damped time-harmonic Galbrun equation and the equations of stellar oscillations, SIAM J. Math. Anal., 53 (2021), pp. 4068-4095

