Space-time Maxwell-Stefan equation
The Maxwell-Stefan system for $N=2$ is given by
\[\begin{equation*} \begin{cases} \partial_t\rho_i=\nabla\cdot \left(\sum_{j=1}^{2}A_{ij}(\rho_1,\rho_2)\nabla\rho_{j}\right)&\mbox{in }\Omega,\ t>0,\\ \sum_{j=1}^2 A_{ij}(\rho_1,\rho_2)\partial_\nu \rho_j = 0&\mbox{on }\partial\Omega,\ t>0,\\ \rho_i(0)=(\rho_0)_i&\mbox{in }\Omega \end{cases} \end{equation*}\]for $i=1,2$, with
\[\begin{equation*} A(\rho_1,\rho_2)=\frac{1}{\delta(\rho_1,\rho_2)}\begin{pmatrix} d_1+(d_3-d_1)\rho_1 &(d_3-d_2)\rho_1\\ (d_3-d_1)\rho_2 & d_2+(d_3-d_2)\rho_2 \end{pmatrix} \end{equation*}\]Write solution in the entropy variable $w$ and the transformation $u:\mathbb R^N\to\mathcal D$, defined as
\[\begin{align*} u_\ell(w)=\frac{e^{w_\ell}}{1+\sum_{i=1}^N e^{w_i}}\quad\mbox{for }\ell=1,\ldots, N \end{align*}\]Find $w_h^\varepsilon\in V_h$ such that, by setting $\rho_h^\varepsilon := u(w_h^\varepsilon)$, it holds true that
\[\begin{align*} \begin{split} \epsilon&(\phi,w_h^\varepsilon)_{H^1(Q_T)^N} +\int_{\Omega}\phi(T) \cdot\rho_h^\varepsilon(T)dx -\int_{\Omega}\phi(0) \cdot \rho_0 dx\\ &-\int_0^T\int_{\Omega}\partial_t\phi \cdot\rho_h^\varepsilon dxdt +\sum_{i,j=1}^N\int_0^T\int_{\Omega}\nabla\phi_i \cdot A_{ij}(\rho_h^\varepsilon)\nabla (\rho_h^\varepsilon)_j dx dt\\ &\qquad\qquad= \int_0^T\int_{\Omega}\phi \cdot f(\rho_h^\varepsilon) dx dt \qquad \forall \phi\in V_h \end{split} \end{align*}\]Applied to the Duncan Toor example: