Embedded Trefftz-DG: Helmholtz
[1]:
from ngsolve import *
from ngstrefftz import *
from netgen.occ import *
from ngsolve.webgui import Draw
We consider the Helmholtz equation with Robin boundary conditions
\[\begin{split}\newcommand{\Th}{{\mathcal{T}_h}}
\newcommand{\Fh}{\mathcal{F}_h}
\newcommand{\dom}{\Omega}
\newcommand{\jump}[1]{[\![ #1 ]\!]}
\newcommand{\tjump}[1]{[\![{#1} ]\!]_\tau}
\newcommand{\avg}[1]{\{\!\!\{#1\}\!\!\}}
\newcommand{\nx}{n_\mathbf{x}}
\newcommand{\Vhp}{V^p(\Th)}
\newcommand{\bT}{\mathbf{T}}
\newcommand{\bW}{\mathbf{W}}
\newcommand{\bw}{\mathbf{w}}
\newcommand{\bl}{\mathbf{l}}
\newcommand{\bM}{\mathbf{M}}
\newcommand{\bL}{\mathbf{L}}
\newcommand{\bA}{\mathbf{A}}
\newcommand{\bU}{\mathbf{U}}
\newcommand{\bV}{\mathbf{V}}
\newcommand{\calL}{\mathcal{L}}
\newcommand{\bu}{\mathbf{u}}
\newcommand{\IT}{\mathbb{T}}
\newcommand{\calG}{\mathcal{G}}
\newcommand{\be}{\mathbf{e}}
\newcommand{\bx}{{\mathbf x}}
\newcommand{\inner}[1]{\langle #1 \rangle}
\begin{align*}
\begin{cases}
-\Delta u - \omega^2 u= f &\text{ in } \dom, \\
\frac{\partial u}{\partial \nx} - i\omega u = g &\text{ on } \partial \dom.
\end{cases}
\end{align*}\end{split}\]
Standard polynomial Trefftz functions for the Helmholtz equation do not exist, to circumvent this problem, we weaken our condition in the Trefftz space. We introduce a projection \(\Pi\) that is yet to be defined and define the weak Trefftz space and the embedded weak Trefftz DG method:
\[\begin{split}\begin{align}
\text{Find }u_{\IT}\in \IT^p(\Th)&,~\text{ s.t. }
a_h(u_{\IT},v_{\IT})=\ell(v_{\IT})\qquad \forall v_{\IT}\in \IT^p(\Th)\quad \text{ with } \\
\IT^p(\Th)&=\{v\in V^k(\mathcal T_h),\ \Pi \calL v=0\}. \label{eq:weakTspace}
% \\ &\IT^p(\Th)=\{v\in L^2(\dom) \sst \restr{v}{K}\in\IT(K),\forall K\in\Th\}
\end{align}\end{split}\]
For the Helmholtz problem we choose \(\Pi:V^{k}(\mathcal T_h)\rightarrow V^{k-2}(\mathcal T_h)\) the \(L^2\) orthogonal projection. This way, we can define the matrix \(\bW\) as
\[\begin{align} \label{def:W3}
(\bW)_{ij}&=\inner{\calL\phi_j,\tilde\phi_i}_{0,h}.
\end{align}\]
with test functions \(\tilde\phi_i\in V^{k-2}(\mathcal T_h)\) and \(\calL=-\Delta u -\omega^2 u\).
[2]:
def TrefftzHelmholtzEmb(fes,omega=1):
mesh = fes.mesh
k = fes.globalorder
u = fes.TrialFunction()
Lap = lambda u : sum(Trace(u.Operator('hesse')))
fes2 = L2(mesh, order=order-2, dgjumps=True,complex=True)
v = fes2.TestFunction()
op = -omega**2*u*v*dx - Lap(u)*v*dx
PP = TrefftzEmbedding(op,fes,test_fes=fes2)
return PP
[3]:
def EmbeddedBasisFunctionsAsMultiDim(Emb, fes):
gfshow = GridFunction(fes, multidim=0)
gf = GridFunction(fes)
coefvec = Emb.CreateRowVector()
for i in range(Emb.width):
coefvec[:] = 0
coefvec[i] = 1
gf.vec.data = Emb * coefvec
gfshow.AddMultiDimComponent(gf.vec)
return gfshow
order = 3
mesh = Mesh(unit_square.GenerateMesh(maxh=1))
fes = L2(mesh, order=order, dgjumps=True,complex=True)
PP = TrefftzHelmholtzEmb(fes)
gfshow = EmbeddedBasisFunctionsAsMultiDim(PP,fes)
Draw (gfshow, mesh, interpolate_multidim=False, animate=False, autoscale=True, settings={"subdivision":20})
[3]:
BaseWebGuiScene
We compare this to the planewave space
\[\begin{align*}
\IT^p=\{e^{-i\omega(d_j\cdot \bx)},\ j=-p,\dots,p\}.
\end{align*}\]
[4]:
order = 3
mesh = Mesh(unit_square.GenerateMesh(maxh=1))
fes = trefftzfespace(mesh, order=order, eq="helmholtz",dgjumps=True,complex=True)
gfshow = GridFunction(fes, multidim=0)
gf = GridFunction(fes)
for i in range(fes.ndof):
gf.vec[:] = 0
gf.vec[i] = 1
gfshow.AddMultiDimComponent(gf.vec)
Draw (gfshow, mesh, interpolate_multidim=False, animate=False, autoscale=False, min=0.8,max=1, settings={"subdivision":20})
[4]:
BaseWebGuiScene
[5]:
omega=1
n = specialcf.normal(2)
exact = exp(1j*sqrt(0.5)*(x+y))
gradexact = CoefficientFunction((sqrt(0.5)*1j*exact, sqrt(0.5)*1j*exact))
bndc = gradexact*n - 1j*omega*exact
eps = 10**-7
We consider the DG-scheme given by
\[\begin{split}\begin{align}
a_h(u,v) &= \sum_{K\in\Th}\int_K \nabla u\nabla v-\omega^2 uv\ dV
-\int_{\Fh^\text{int}}\left(\avg{\nabla u}\jump{v}+\jump{u} \avg{\overline{\nabla v}} \right) dS \nonumber \\
&\qquad+\int_{\Fh^\text{int}} \left( i\alpha \omega\jump{u}\jump{\overline{v}} - i\frac{\beta}{\omega}\jump{\nabla u}\jump{\overline{\nabla v}} \right) dS -\int_{\Fh^\text{bnd}}\delta\left(\nx\cdot\nabla u \overline{v}+u \overline{\nx\cdot\nabla v}\right) dS\\ \nonumber
&\qquad-\int_{\Fh^\text{bnd}} \left( i(1-\delta)\omega{u}{\overline{v}} + i\frac{\delta}{\omega}{\nabla u\cdot\nx}{\overline{\nabla v}\cdot\nx} \right) dS \\
\ell(v) &= \int_\Omega fv\ dV + \int_{\Fh^\text{bnd}}\left( (1-\delta)g\overline{v} - i\frac{\delta}{\omega}g\overline{\nx\cdot\nabla v}\right) dS
\end{align}\end{split}\]
[6]:
def dghelmholtz(fes,omega,rhs=0,bndc=0,bnd=".*"):
u,v = fes.TnT()
h = specialcf.mesh_size
order = fes.globalorder
alpha = order**2/h
beta = h/order
delta = 0.1*omega*h/order
IP = lambda u,v: InnerProduct(u,v)
jump_u = (u-u.Other())*n
jump_v = (v-v.Other())*n
jump_du = (grad(u)-grad(u.Other()))*n
jump_dv = (grad(v)-grad(v.Other()))*n
mean_u = 0.5 * (u+u.Other())
mean_du = 0.5 * (grad(u)+grad(u.Other()))
mean_dv = 0.5 * (grad(v)+grad(v.Other()))
a = BilinearForm(fes)
a += grad(u)*grad(v)*dx - omega**2*u*v*dx
a += -(jump_u*mean_dv+mean_du*jump_v) * dx(skeleton=True)
a += -1j*omega*alpha*jump_u*jump_v * dx(skeleton=True)
a += -1j*beta/(omega)*(jump_du*jump_dv) * dx(skeleton=True)
a += -delta*(u*grad(v)*n+grad(u)*n*v) * ds(bnd,skeleton=True)
a += -1j*(1-delta)*omega*u*v * ds(bnd,skeleton=True)
a += -1j*delta/(omega)*(grad(u)*n)*(grad(v)*n) * ds(bnd,skeleton=True)
f = LinearForm(fes)
f += rhs * v * dx
f += (1-delta)*bndc*v * ds(bnd,skeleton=True)
f += -1j*delta/omega*bndc*grad(v)*n * ds(bnd,skeleton=True)
with TaskManager():
a.Assemble()
f.Assemble()
return a,f
[7]:
mesh = Mesh(unit_square.GenerateMesh(maxh=.3))
order = 4
fes = L2(mesh, order=order, complex=True, dgjumps=True)
a,f = dghelmholtz(fes,omega,bndc=bndc)
PP = TrefftzHelmholtzEmb(fes)
PPT = PP.CreateTranspose()
with TaskManager():
TA = PPT@a.mat@PP
TU = TA.Inverse()*(PPT*f.vec)
gfu = GridFunction(fes)
gfu.vec.data = PP*TU
error = sqrt(Integrate((gfu-exact)*Conj(gfu-exact), mesh).real)
print("error ",error)
error 6.622323484588101e-08
[8]:
air = Circle((0.5, 0.5), 0.8).Face()
air.edges.name = 'outer'
scatterer = MoveTo(0.7, 0.3).Rectangle(0.05, 0.4).Face()
scatterer.edges.name = 'scat'
geo = OCCGeometry(air - scatterer, dim=2)
mesh = Mesh(geo.GenerateMesh(maxh=0.05))
omega = 25
rhs = 3e2*exp(-(40**2)*((x-0.5)*(x-0.5) + (y-0.5)*(y-0.5)))
fes = L2(mesh, order=order, complex=True, dgjumps=True)
a,f = dghelmholtz(fes,omega,rhs=rhs,bnd="outer")
PP = TrefftzHelmholtzEmb(fes,omega)
PPT = PP.CreateTranspose()
with TaskManager():
TA = PPT@a.mat@PP
TU = TA.Inverse()*(PPT*f.vec)
gfu = GridFunction(fes)
gfu.vec.data = PP*TU
Draw(gfu, mesh, animate_complex=True,deformation=True);