Laplace

We are looking to solve

\[\begin{split}\begin{align*} \begin{split} \begin{cases} -\Delta u = 0 &\text{ in } \Omega, \\ u=g &\text{ on } \partial \Omega, \end{cases} \end{split} \end{align*}\end{split}\]

using a Trefftz-DG formulation

[1]:
from ngsolve import *
from ngstrefftz import *
from netgen.occ import *

Constructing a Trefftz space

A Trefftz space for the Laplace problem is given by the harmonic functions that locally fulfil

\[\begin{align*} \begin{split} \mathbb{T}^p(K):=\big\{ f\in\mathbb{P}^p(K) \mid \Delta f = 0 \big\}, \qquad p\in \mathbb{N}. \end{split} \end{align*}\]

We can construct it in NGSolve like so:

[2]:
mesh = Mesh(unit_square.GenerateMesh(maxh=.3))
fes = trefftzfespace(mesh,order=7,eq="laplace")

Using the eq key word one needs to tell the Trefftz space the operator for which to construct Trefftz functions.

To get an overview on the implemented Trefftz functions see

[3]:
trefftzfespace?

We will test against an exact solution given by

[4]:
exact = exp(x)*sin(y)
bndc = exact

A suiteable DG method is given by

\[\begin{split}\newcommand{\Th}{{\mathcal{T}_h}} \newcommand{\Fh}{\mathcal{F}_h} \newcommand{\dom}{\Omega} \newcommand{\jump}[1]{[\![ #1 ]\!]} \newcommand{\tjump}[1]{[\![{#1} ]\!]_\tau} \newcommand{\avg}[1]{\{\!\!\{#1\}\!\!\}} \newcommand{\nx}{n_\mathbf{x}} \begin{align}\label{eq:dglap} \begin{split} a_h(u,v) &= \int_\dom \nabla u\nabla v\ dV -\int_{\Fh^\text{int}}\left(\avg{\nabla u}\jump{v}+\avg{\nabla v}\jump{u} - \frac{\alpha p^2}{h}\jump{u}\jump{v} \right) dS \\ &\qquad -\int_{\Fh^\text{bnd}}\left(\nx\cdot\nabla u v+\nx\cdot\nabla v u-\frac{\alpha p^2}{h} u v \right) dS\\ \ell(v) &= \int_{\Fh^\text{bnd}}\left(\frac{\alpha p^2}{h} gv -\nx\cdot\nabla vg\right) dS. \end{split} \end{align}\end{split}\]
[5]:
def dglap(fes,bndc):
    mesh = fes.mesh
    order = fes.globalorder
    alpha = 4
    n = specialcf.normal(mesh.dim)
    h = specialcf.mesh_size
    u = fes.TrialFunction()
    v = fes.TestFunction()

    jump_u = (u-u.Other())*n
    jump_v = (v-v.Other())*n
    mean_dudn = 0.5 * (grad(u)+grad(u.Other()))
    mean_dvdn = 0.5 * (grad(v)+grad(v.Other()))

    a = BilinearForm(fes,symmetric=True)
    a += grad(u)*grad(v) * dx \
        +alpha*order**2/h*jump_u*jump_v * dx(skeleton=True) \
        +(-mean_dudn*jump_v-mean_dvdn*jump_u) * dx(skeleton=True) \
        +alpha*order**2/h*u*v * ds(skeleton=True) \
        +(-n*grad(u)*v-n*grad(v)*u)* ds(skeleton=True)

    f = LinearForm(fes)
    f += alpha*order**2/h*bndc*v * ds(skeleton=True) \
         +(-n*grad(v)*bndc)* ds(skeleton=True)

    with TaskManager():
        a.Assemble()
        f.Assemble()
    return a,f
[6]:
a,f = dglap(fes,bndc)
gfu = GridFunction(fes)
with TaskManager():
    gfu.vec.data = a.mat.Inverse(inverse='sparsecholesky') * f.vec
error = sqrt(Integrate((gfu-exact)**2, mesh))
print("trefftz",error)
trefftz 3.9353802613441935e-12
[7]:
from ngsolve.webgui import Draw
Draw(gfu)
[7]:
BaseWebGuiScene

Comparison of the sparsity pattern

We compare the sparsity pattern to the one of the full polynomial \(\texttt{L2}\) space

[8]:
import scipy.sparse as sp
import numpy as np
import matplotlib.pylab as plt
a2,_ = dglap(L2(mesh,order=7,dgjumps=True),bndc)

A1 = sp.csr_matrix(a.mat.CSR())
A2 = sp.csr_matrix(a2.mat.CSR())
fig = plt.figure(); ax1 = fig.add_subplot(121); ax2 = fig.add_subplot(122)
ax1.set_xlabel("Trefftz=True"); ax1.spy(A1,markersize=1); ax1.set(ylim=(a2.mat.height,0),xlim=(0,a2.mat.width))
ax2.set_xlabel("Trefftz=False"); ax2.spy(A2,markersize=1)
[8]:
<matplotlib.lines.Line2D at 0x7f6b741da5a0>
../_images/notebooks_laplace_14_1.png