1. Sparsity comparison of polytopal finite element methods
    Christoph Lehrenfeld, PS, Maximilian Zienecker
    arXiv:2405.16864, 2024 [pdf,cite]
  2. Trefftz Discontinuous Galerkin discretization for the Stokes problem
    Philip L. Lederer, Christoph Lehrenfeld, PS
    Numer. Math., 2023 [pdf,cite]
  3. On polynomial Trefftz spaces for the linear time-dependent Schrödinger equation
    Sergio Gómez, Andrea Moiola, Ilaria Perugia, PS
    Appl. Math. Lett., 2023 [pdf,cite]
  4. Unfitted Trefftz discontinuous Galerkin methods for elliptic boundary value problems
    Fabian Heimann, Christoph Lehrenfeld, PS, Henry von Wahl
    ESAIM: M2AN, 2022 [pdf,cite]
  5. A new T-compatibility condition and its application to the discretization of the damped time-harmonic Galbrun’s equation
    Martin Halla, Christoph Lehrenfeld, PS
    arXiv:2209.01878, 2022 [pdf,cite,slides]
  6. Robust finite element discretizations for a simplified Galbrun’s equation
    Tilman Alemán, Martin Halla, Christoph Lehrenfeld, PS
    eccomas2022, 2022 [pdf,cite]
  7. NGSTrefftz: Add-on to NGSolve for Trefftz methods
    J. Open Source Soft., 2022 [pdf,cite,slides]
  8. Embedded Trefftz discontinuous Galerkin methods
    Christoph Lehrenfeld, PS
    Int. J. Numer. Methods Eng., 2022 [pdf,cite,slides]
  9. A space-time quasi-Trefftz DG method for the wave equation with piecewise-smooth coefficients
    Lise-Marie Imbert-Gérard, Andrea Moiola, PS
    Math. Comp., 2020 [pdf,cite]
  10. An entropy structure preserving space-time formulation for cross-diffusion systems: Analysis and Galerkin discretization
    Marcel Braukhoff, Ilaria Perugia, PS
    SIAM J. Numer. Anal., 2020 [pdf,cite,slides]
  11. Tent pitching and Trefftz-DG method for the acoustic wave equation
    Ilaria Perugia, Joachim Schöberl, PS, Christoph Wintersteiger
    Comput. Math. Appl., 2020 [pdf,cite]

See also google-scholar and orcid.